

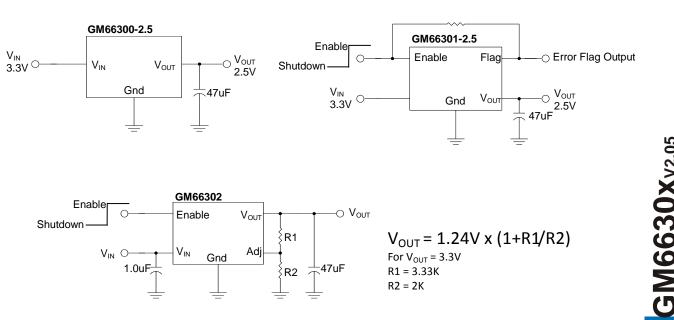
3.0A ULTRA LOW DROPOUT VOLTAGE REGULATORS

Description

The GM66300, GM66301 and GM66302 are 3.0A, low dropout linear voltage regulators that provide a low voltage, high-current output with a minimum of external components. Utilizing proprietary Super beta PNP pass element, the GM66300/1/2 offers extremely low dropout (typically 400mV at 3.0A) and low ground current (typically 36mA at 3.0A).

The GM66300/1/2 is ideal for PC add-in cards that need to convert from standard 3.3V to 2.5V or 2.5V to 1.8V. A guaranteed maximum dropout voltage of 500mV over all operating conditions allows the GM66300/1/2 to provide 2.5V from a supply as low as 3V, and 1.8V from a supply as low as 2.5V. The GM66300/1/2 also has fast transient response for heavy switching applications. The device requires only 47μ F of output capacitance to maintain stability and achieve fast transient response.

The GM66300/1/2 is fully protected with over current limiting, thermal shutdown, reversed-battery protection, reversed-leakage protection, and reversed-lead insertion. The GM66301 offers a TTL-logic compatible enable pin and an error flag that indicates under voltage and over current conditions. Offered in fixed voltages, the GM66300/1 comes in the TO-220 and TO-263 packages and is an ideal upgrade to older, NPN-based linear voltage regulators.


The GM66302 is adjustable version, with On/Off feature.

Features

- 3.0A minimum guaranteed output current
- 500mV maximum dropout voltage over temperature, which is ideal for 3.0V to 2.5V conversion and 2.5V to 1.8V conversion.
- 1% initial accuracy
- Low ground current
- Current limiting and Thermal shutdown
- Reversed-battery protection
- Reversed-leakage protection
- Fast transient response
- Error flag output (GM66301 only)
- Adjustable version (GM66302 only)

Application

- PC Add-in Cards
- High Efficiency Linear Power Supplies
- Multi-media and PC Processor Supplies
- Low Voltage Microcontrollers
- Automotive Electronics

Typical Application Circuits

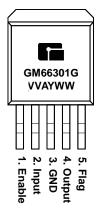
3.0A ULTRA LOW DROPOUT VOLTAGE REGULATORS

Marking Information and Pin Configurations (Top View)

GM66300 (Green Product)

E

TO 220

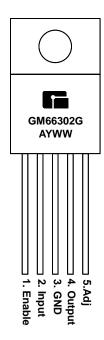

G: Green Product VV: Voltage suffix (15 = 1.5V, 50 = 5.0V...A = Adj) A: Assembly / Test site code Y: Year WW: Week

GM66301 (Green Product)

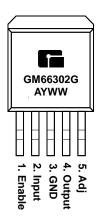
5L TO 220

5L TO 263

G: Green Product VV: Voltage suffix (15 = 1.5V, 50 = 5.0V...A = Adj) A: Assembly / Test site code Y: Year WW: Week



3.0A ULTRA LOW DROPOUT VOLTAGE


REGULATORS

GM66302 (Green Product)

5L TO 220

5L TO 263

G: Green Product A: Assembly / Test site code Y: Year WW: Week

3.0A ULTRA LOW DROPOUT VOLTAGE

REGULATORS

Ordering Information – Green Product

Ordering Number	Output Voltage	Package	Shipping	
GM66300				
GM66300-1.8TA3RG	1.8V	TO-263	800 Units / Reel	
GM66300-1.8TB3TG	1.8V	TO-220	50 Units/Tube	
GM66300-2.5TA3RG	2.5V	TO-263	800 Units / Reel	
GM66300-2.5TB3TG	2.5V	TO-220	50 Units/Tube	
GM66300-3.3TA3RG	3.3V	TO-263	800 Units / Reel	
GM66300-3.3TB3TG	3.3V	TO-220	50 Units/Tube	
GM66300-5.0TA3RG	5.0V	TO-263	800 Units / Reel	
GM66300-5.0TB3TG	GM66300-5.0TB3TG 5.0V		50 Units/Tube	

Ordering Information – Green Product

Ordering Number	Output Voltage	Package	Shipping	
GM66301				
GM66301-1.8TA5RG	1.8V	TO-263-5	800 Units / Reel	
GM66301-1.8TB5TG	1.8V	TO-220-5	50 Units/Tube	
GM66301-2.5TA5RG	2.5V	TO-263-5	800 Units / Reel	
GM66301-2.5TB5TG	2.5V	TO-220-5	50 Units/Tube	
GM66301-3.3TA5RG	3.3V	TO-263-5	800 Units / Reel	
GM66301-3.3TB5TG	3.3V	TO-220-5	50 Units/Tube	
GM66301-5.0TA5RG	5.0V	TO-263-5	800 Units / Reel	
GM66301-5.0TB5TG	5.0V	TO-220-5	50 Units/Tube	

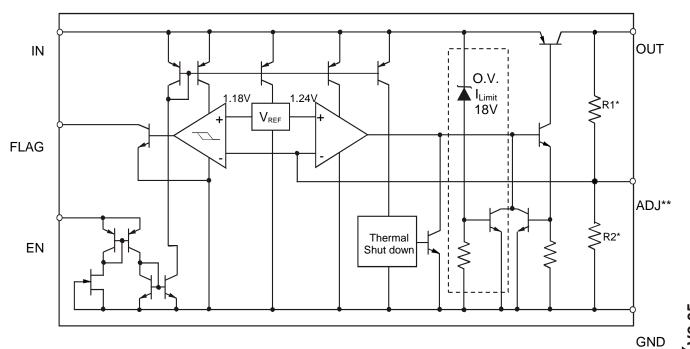
Ordering Information – Green Product

Ordering Number Output Voltage		Package	Shipping	
GM66302				
GM66302TA5RG	Adj	TO-263-5	800 Units / Reel	
GM66302TB5TG	Adj	TO-220-5	50 Units/Tube	

3.0A ULTRA LOW DROPOUT VOLTAGE

REGULATORS

Absolute Maximum Ratings


Parameter	Symbol	Value	Unit
Power Dissipation	P _D	Internally Limited	W
Input Power Supply Voltage (Note 1)	V _{IN}	-20 to +20	V
Enable Pin Voltage	V _{EN}	+20	V
Storage Temperature Range	T _{STG}	- 65 to 150	°C
Lead Temperature (Soldering, 5 sec)		+ 260	°C

Note 1: Maximum positive supply voltage of 60V must be of limited duration (<100msec) and duty cycle (< 1%). The maximum continuous supply voltage is 26V.

Operating Ratings

Parameter	Symbol	Value	Unit
Maximum Operating Input Voltage	V _{IN}	2.5 - 16	V
Enable Voltage	$V_{\sf EN}$	16	V
Operating Junction Temperature	TJ	-40 to +125	°C

Block Diagram

* Feedback network in fixed versions only

** Adjustable version only

3.0A ULTRA LOW DROPOUT VOLTAGE

REGULATORS

Electrical Characteristics:

П

Unless otherwise specified: $T_J = 25^{\circ}C$, Bold values are guaranteed across the full operating temperature range.

Paramete	ər	Conditio	n		Symbol	Min	Тур	Max	Unit
Output Voltage		I _O = 10mA				-1		1	
		$10\text{mA} \le I_0 \le 3.0\text{A}, V_{OUT} + 1\text{V} \le V_{IN} \le 8\text{V}$			V _{OUT}	-2		2	%
Line Regulation $I_0 = 10$ mA, $V_{OUT} + 1V \le V_{IN} \le 8V$			ΔVoi		0.06	0.5	%		
Load Reg	ulation	$V_{IN} = V_{OU}$	⊤ + 1V, 10r	nA ≤ I _O ≤ 3A	ΔV_{OL}		0.2	1.0	%
Output Te	emperature	Coefficient	t (Note 5)		$\Delta V_{OUT} / \Delta T$		20	100	ppm/%
				I _O = 100mA			65	200	
Dropout V	/oltage		I _O = 750A			185			
(Note 6, N		$\Delta V_{OUT} = -$	1%	I _O = 1.5A	V _{DO}		250		mV
				I _O = 3.0A			385	550	
		l ₀ = 750m	$hA, V_{IN} = V_{IN}$	_{OUT} + 1V			10	20	
Ground C (Note 7)	urrent	l ₀ = 1.5A,	V _{IN} = V _{OUT}	r + 1V	I _{GND}		17		mA
		I ₀ = 1.5A,	VIN = VOUT	r + 1V			45		
Ground P at Dropou	in Current It	V _{IN} = 0.5 I _O = 10m/	$V_{IN} = 0.5V$ less than specified V_{OUT} , $D_{D} = 10mA$		I _{gnddo}		6		mA
Current Li	imit	V _{OUT} = 0\	/, V _{IN} = Vol	τ + 1 V	I _{CL}		4.5		Α
Enable	Input GM	66301/0	GM66302	2	1	1	-1	1	,
Input	Low (Off)							0.8	v
Logic Voltage	High (On)					2.5			v
		$V_{\rm ev} = 2$	V _{EN} = 2.5V				15	30	
Enable Pi	n Input	$v_{\rm EN} = 2.5 v$		– I _{EN}			75	μA	
Current		V _{EN} = 0.8V		IEN			2		
							4		
Regulator	Output	(Note 9)		lass		10		μA	
Current in	Shutdown	(Note 8)			I _{OSD}				20
Flag Ou	utput (GM	66301)			1	L	1	T	I
Output Le	akage Curr	ent $V_{OH} = 16V$		I _{FLG(leak)}		0.01	1	μA	
o utput 20				I LO(Ieak)			2		
Output Lo	w Voltage	VINI =	V _{IN} = 2.5V, I _{OL} = 250µA, Note 9		V _{FLG(do)}		220	300	mV
Output Low Voltage		• 114	, .OL		- 1 20(00)			400	
Low Threshold High Threshold		% of	% of V _{OUT}		4	93			
		% of V _{OUT}		V _{FLG}			99.2	%	
Hysteresi							1		
Referen	nce (Adj p	oin, GM6	6302 or	nly)					
Reference Voltage				V _{ADJ}	1.228	1.240	1.252	v	
					, , , , , , , , , , , , , , , , , , , ,	1.215		1.265	· ·
Adj pin bia	as current				I _{ADJ}		40	80	nA

3.0A ULTRA LOW DROPOUT VOLTAGE REGULATORS

- Note 1. Exceeding the absolute maximum ratings may damage the device.
- Note 2. The device is not guaranteed to function outside its operating rating.
- Note 3. Devices are ESD sensitive. Handling precautions recommended.
- **Note 4.** $P_{D(max)}=(T_{J(max)}-T_A)+\theta_{JA}$, where θ_{JA} depends upon the printed circuit layout. See "Applications Information".
- Note 5. Output voltage temperature coefficient is .V_{OUT}(worst case)+(T_J(max)- T_J(min)) where T_J(max) is +125°C and T_J(min) is -40°C.
- **Note 6.** $V_{DO}=V_{IN}-V_{OUT}$ when VOUT decreases to 99% of its nominal output voltage with $V_{IN}=V_{OUT}+1V$. For output voltages below 2.5V, dropout voltage is the input-to-output voltage differential with the minimum input voltage being 2.5V. Minimum input operating voltage is 2.5V.
- Note 7. I_{GND} is the quiescent current. $I_{IN}=I_{GND}+I_{OUT}$.
- $\label{eq:VEN} \mbox{Note 8.} \quad V_{EN} \leq 0.8V, \ V_{IN} \leq 8V, \ \mbox{and} \ \ V_{OUT} \mbox{=} 0V.$
- Note 9. For 1.8V device, VIN=2.5V.

3.0A ULTRA LOW DROPOUT VOLTAGE REGULATORS

Typical Application Circuits

The GM66300/01/02 is a high performance, low dropout voltage regulator suitable for moderate to high-current voltage regulator applications. Its 500mV dropout voltage at full load makes it especially valuable in battery-powered systems and a high-efficiency noise filter in post-regulator applications.

Unlike older NPN-pass transistor designs, where the minimum dropout voltage is limited by the base-to-emitter voltage drop and collector-to-emitter saturation voltage, dropout performance of the PNP output of these devices is limited only by the low VCE saturation voltage. A trade-off for the low dropout voltage is a varying base drive requirement. Super beta PNP process reduces this drive requirement to only 2% to 5% of the load current.

The GM66300/01/02 regulator is fully protected from damage due to fault conditions. Current limiting is provided. This limiting is linear, output current during overload conditions is constant. Thermal shutdown disables the device when the die temperature exceeds the maximum safe operating temperature. Transient protection allows device (and load) survival even when the input voltage spikes above and below nominal. The output structure of these regulators allows voltages in excess of the desired output voltage to be applied without reverse current flow.

• Thermal design

Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics.

Thermal design requires four application-specific parameters:

- Maximum ambient temperature (T_A)
- Output Current (I_{OUT})
- Output Voltage (Vout)
- Input Voltage (V_{IN})
- Ground Current (I_{GND})

Calculate the power dissipation of the regulator from these numbers and the device parameters from this datasheet, where the ground current is taken from data sheet

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$

The heat sink thermal resistance is determined by:

$$\theta_{JA} = \frac{T_{J(max)} - T_A}{P_D} - (\theta_{JC} + \theta_{CS})$$

where $T_{J(max)} \leq 125^{\circ}C$ and θ_{CS} is between 0°C and 2°C/W.

The heat sink may by significantly reduced in applications where the minimum input voltage is known and is large compared with the dropout voltage. Use a series input resistor to drop excessive voltage and distribute the heat between this resistor and the regulator. The low dropout properties of Super β eta PNP regulators allow significant reductions in regulator power dissipation and the associated heat sink without compromising performance. When this technique is employed, a capacitor of at least 1.0μ F is needed directly between the input and regulator ground. Refer to *Application Note 9* for further details and examples on thermal design and heat sink specification.

• Output Capacitor

The GM66300/1/2 requires an output capacitor to maintain stability and improve transient response. Proper capacitor selection is important to ensure proper operation. The GM66300/1/2 output capacitor selection is dependent upon the ESR (equivalent series resistance) of the output capacitor to maintain stability. When the output capacitor is 47μ F or greater, the output capacitor should have less than 1. of ESR. This will improve transient response as well as promote stability. Ultra-low ESR capacitors, such as ceramic chip capacitors may promote instability. These very low ESR levels may cause an oscillation and/or underdamped transient response. A low-ESR solid tantalum capacitor works extremely well and provides good transient response and stability over temperature. Aluminum electrolytics can also be used, as long as the ESR of the capacitor is $\leq 1\Omega$. The value of the output capacitor can be increased without limit. Higher capacitance values help to improve transient response and ripple rejection and reduce output noise.

3.0A ULTRA LOW DROPOUT VOLTAGE REGULATORS

• Input Capacitor

An input capacitor of 1µF or greater is recommended when the device is more than 4 inches away from the bulk as supply capacitance, or when the supply is a battery. Small, surfacemount, ceramic chip capacitors can be used for the bypassing. Larger values will help to improve ripple rejection by bypassing the input to the regulator, further improving the integrity of the output voltage.

• Transient Response and 3.3V to 2.5V and 2.5V to 1.8V Conversions

The GM66300/1/2 has excellent transient response to variations in input voltage and load current. The device has been designed to respond quickly to load current variations and input voltage variations. Large output capacitors are not required to obtain this performance. A standard 47µF output capacitor, preferably tantalum, is all that is required. Larger values help to improve performance even further. By virtue of its low-dropout voltage, this device does not saturate into dropout as readily as similar NPN-based designs.

When converting from 3.3V to 2.5V or 2.5V to 1.8V, the NPN-based regulators are already operating in dropout, with typical dropout requirements of 1.2V or greater. To convert down to 2.5V without operating in dropout, NPN-based regulators require an input voltage of 3.7V at the very least. TheGM66300/1/2 regulator will provide excellent performance with an input as low as 3.0V or 2.5V. This gives the PNP-based regulators a distinct advantage over older, NPN-based linear regulators.

• Minimum Load Current

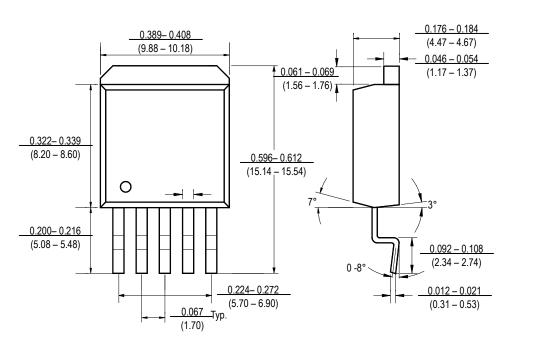
The GM66300/1/2 regulator is specified between finite loads. If the output current is too small, leakage dominate and the output voltage rises. A 10mA minimum load current is necessary for proper regulation.

• Error Flag

The GM66301 version features an error flag circuit which monitors the output voltage and signals an error condition when the voltage drops 5% below the nominal output voltage. The error flag is an open-collector output that can sink 10mA during a fault condition. Low output voltage can be caused by a number of problems, including an over current fault (device in current limit) or low input voltage. The flag is inoperative during over temperature shutdown. When the error flag is not used, it is best to leave it open. The flag pin can be tied directly to pin 4, the output pin.

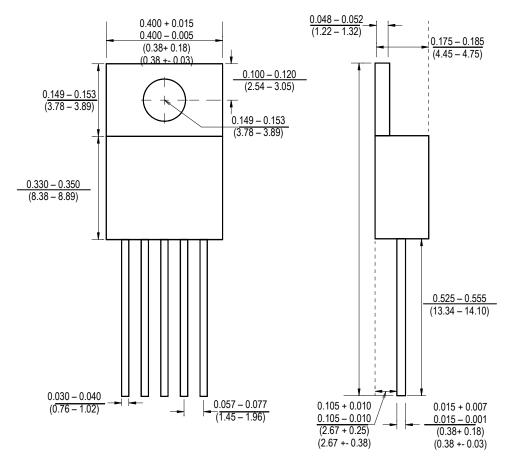
Enable Input

The GM66301/2 version features an enable input for on/off control of the device. Its shutdown state draws "zero" current (only microamperes of leakage). The enable input is TTL/CMOS compatible for simple logic interface, but can be connected to up to 20V. When enabled, it draws approximately 15µA.


I.

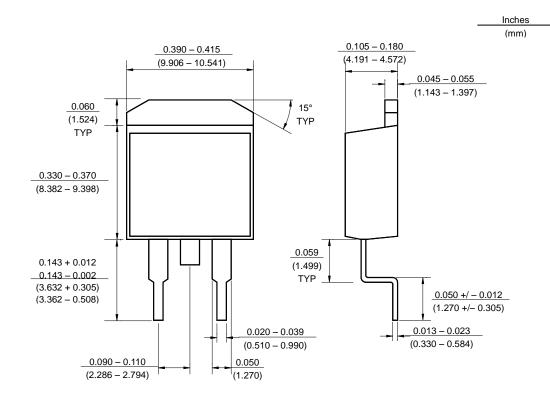
GM6630x Series

3.0A ULTRA LOW DROPOUT VOLTAGE REGULATORS


Package Outline Dimensions - TO-263-5

Inches (mm)

Package Outline Dimensions – TO-220-5



3.0A ULTRA LOW DROPOUT VOLTAGE

REGULATORS

Package Outline Dimensions – TO263

3.0A ULTRA LOW DROPOUT VOLTAGE

REGULATORS

C	Ordering Number								
	<u>GM</u>	<u>66300</u>	- <u>1.5</u>	<u>TA3</u>	<u>R</u>	<u>G</u>			
	APM Gamma	Circuit Type	Output Voltage	Package Type	Shipping Type				
	Micro		1.8 = 1.8V 2.5 = 2.5V 3.3 = 3.3V 5.0 = 5.0V	TA3: TO263 TB3: TO220	R:Taping& Reel T: Tube	Blank: Pb-free G:Green			
	• • •	00004	4 5	T A <i>C</i>	-	•			
	<u>GM</u>	<u>66301</u>	- <u>1.5</u>	<u>TA5</u>	<u>R</u>	<u>G</u>			
	APM Gamma	Circuit Type	Output Voltage	Package Type	Shipping Type				
	Micro		1.8 = 1.8V 2.5 = 2.5V 3.3 = 3.3V 5.0 = 5.0V	TA5: TO263-5 TB5: TO220-5	R:Taping& Reel T:Tube	Blank: Pb-free G:Green			
					_	_			
		<u>GM</u>	<u>66302</u>	<u>TA5</u>	<u>R</u>	<u>G</u>			
	APM Gam		Circuit Type	Package Type	Shipping Type				
				TA3: TO263-5 TB3: TO220-5	R:Taping& Reel T:Tube	Blank: Pb-free G:Green			

Note:

I.

Green products:

- Lead-free (RoHS compliant)
- Halogen free(Br or CI does not exceed 900ppm by weight in homogeneous material and total of ٠ Br and Cl does not exceed 1500ppm by weight)